

Ultrasonic Testing Formulas

Longitudinal Wave Velocity $V_{L} = \sqrt{\frac{E(1-\mu)}{\rho(1+\mu)(1-2\mu)}}$ Where: V_L = Longitudinal Wave Velocity E = Modulus of Elasticity ρ = Density μ = Poisson's Ratio Shear Wave Velocity $V_s = \sqrt{\frac{E}{2\rho(1+\mu)}} \text{ or } \sqrt{\frac{G}{\rho}}$ Where: $V_s = Shear Wave Velocity$ E = Modulus of Elasticity Density ρ = μ = Poisson's Ratio G = Shear Modulus Wavelength $\lambda = \frac{V}{f}$ Where: λ = Wavelength V = Velocity F = Frequency

<u>Ultrasonic Testing Formulas</u>
<u>Refraction</u> <u>(Snell's Law)</u>
$\sin \theta_I = V_1$
$\overline{\sin \theta_R} = \overline{V_2}$
Where:
Θ_{I} = Angle of the Incident Wave
Θ_{R} = Angle of the Reflected Wave
$V_1 = Velocity of Incident Wave$
$V_2 = Velocity of Reflected Wave$
Acoustic Impedance
$Z = \rho \mathbf{x} V$
Where:
Z = Acoustic Impedance
$ \rho = Density $ $ V = Velocity $
Reflection Coefficient
$R = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$
Where:
R = Reflection Coefficient
Z_1 = Acoustic Impedance of Medium 1
$Z_2 = \frac{\text{Acoustic Impedance of Medium}}{2}$
<u>Near Field</u>
$N = \frac{D^2}{4\lambda}$ or $N = \frac{D^2 F}{4V}$
Where:
\mathbf{N} = Near Field
D = Transducer Diameter
$\lambda =$ wavelength V = Velocity

Scanstar Inspection Technology Private Limited

Ultrasonic Testing Formulas

Surface Distance – Beam Path X Sin θ

Half Skip Depth - Beam Path X Cos θ

Skip Depth – { $2T - (Beam Path X Cos \theta)$ }

Where:

T – Thickness of the Job.

 Θ – Angle of the Probe.

BP – Beam Path.